

Revised

2014 Marking Scheme

Grade	Mark Required		% condi	% condidator achieving anade				
Awarded	/ ₁₂₅	%	% canal	⁷ canalates achieving grad				
A	87+	69.6%		38.1%				
В	74+	59.2%		29.5%				
С	61+	48.8%		13.7%				
D	54+	43.2%		6.5%				
No award	<54	<43.2%	b	12.2%				
Castian					Tuuratiaatiaa			
Section	Muitipie	choice	Extended An	swer	Investigation			
Average Mark:	23.3	/30	42.2	/70	16.3	/25		

20	014	Revi	sed Adv H Chemistry Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	В	70	 ☑A Principal Quantum Number (n) is the electron shell/energy level number ☑B Angular Momentum Quantum Number (l) specifies the subshell shape s,p,d or f ☑C Magnetic Quantum Number (m) specifies the individual s,p,d or f orbitals ☑D Spin Quantum Number (s) species which spin direction the electron has +¹/₂, -¹/₂
2	С	89	$\blacksquare A$ s-block is group 1 \rightarrow group 2 $\blacksquare B$ p-block is group 3 \rightarrow group 0 $\boxdot C$ d-block is the transition metals $\blacksquare D$ f-block is the Actinide and Lanthanide rows at the bottom of the Periodic Table
3	С	50	 A the five 3d orbitals are degenerate (equal in energy) in the ground state B all transition metal atoms have at least one electrons in the 4s orbital C in chromium and copper, atoms have 4s¹ to allow full/half-full 3d orbitals D 4s electrons are further from the nucleus and are removed before 3d electrons
4	D	92	 A for a red colour, the green and blue wavelengths need to be absorbed B for a black colour, all visible wavelengths need to be absorbed C for a violet(magenta) colour, the green wavelengths need to be absorbed D if only ultraviolet wavelengths are absorbed the solution will be colourless
5	D	87	 A Hund's Rule: orbitals fill up single rooms first to maximise the number of parallel spins B Aufbau principle: Orbitals fill up in order of lowest energy (1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f, etc) C Hund's Rule: orbitals fill up single rooms first to maximise the number of parallel spins D Pauli Exclusion Principle: No electron has the same 4 guantum numbers
6	В	90 oldAH=78	EA Energy of photon is proportional to frequency of radiation $E = h f \therefore E \alpha f$ B Energy of photon is proportional to frequency of radiation $E = h f \therefore E \alpha f$ C Energy is inversely proportional to wavelength $E = \frac{hc}{\lambda} \therefore E \alpha \frac{1}{\lambda}$ D Energy of photon is proportional to frequency of radiation $E = h f \therefore E \alpha f$
7	С	82 oldaH=76	 A wavelength absorbed dependent on type of ion (not its concentration) B frequency absorbed dependent on type of ion (not its concentration) C As concentration of ion increases more radiation is absorbed by ion D Less radiation is transmitted (more is absorbed by increased ion concentration)
8	A	70 oldAH=61	 A SF₆: 6 bonding pairs = octahedral arrangement bond angle = 90° B NH4⁺:4 bonding pairs in tetrahedral arrangement bond angle = 109.5° C SiCl4:4 bonding pairs in tetrahedral arrangement bond angle = 109.5° D BeF4²⁻: 4bonding pairs in tetrahedral arrangement bond angle = 109.5°
9	A	75 oldah=70	☑A BF3: 3 bonding pair = trigonal planar ☑B NH3: 3 bonding pairs + 1 lone pair = trigonal pyramidal ☑C OH3 ⁻ : 3 bonding pairs + 1 lone pair = trigonal pyramidal ☑D PH3: 3 bonding pairs + 1 lone pair = trigonal pyramidal
10	С	82 oldah=80	 ☑A 4s shell fills up before 3d ∴ electrons not in lowest ground state if 3d filled ☑B 3d shell fills up after 4s ∴ electrons not in lowest ground state if 4p filled ☑C 4s fills up 4s² before remaining 3 electrons fill 3d shell to 3d³ ☑D 4s must be completely filled before 3d starts to fill
11	D	83 oldAH=82	 ☑A CIO⁻ ion: CI has oxidation state = +1 ☑B CIO₂⁻ ion: CI has oxidation state = +3 ☑C CIO₃⁻ ion: CI has oxidation state = +5 ☑D CIO₄⁻ ion: CI has oxidation state = +7
12	В	46 oldAH=49	 A [I₂] in X decreases as I₂ leaves solvent X and transfers into solvent Y B [I₂] in X decreases as I₂ leaves solvent X and transfers into solvent Y C Partition Coefficient remains constant D Partition Coefficient remains constant

10		71	A Order of reaction is determined by experiment to work out individual orders B The order of a reaction does not determine the reaction rate
13	A	oldAH=52	EC The stoichiometry (number of moles of each reactant) does not fix the order 区D The order is determined by the one step (RDS) not the sequence of steps
11	D	74	Slow Step is the rate determining step in mechanism
14	В	oldAH=67	Order of X = 1 as 1 particle of X in RDS Order of Y = 1 as 1 particle of Y in RDS $\therefore \text{ rate = } k [X]^{1}[Y]^{1} = k [X][Y]$
		00	A hybridisation is when s and p orbitals become degenerate and for sp ³ or sp ² R the central signs band involves the overlap of arbitals along central axis
15	В	89	SC A pi bond has overlapping unhybridised orbitals around the central sigma bond
		0IdAH=86	Image: Solution of the second state
16	Γ	88	Image: State of the state
10	U	oldAH=86	⊠C 1,1-dichloroethene has no geometric isomers ☑D 1,2-dichloroethene has cis- and trans- geometric isomers
17	Δ	66	25cm ³ of Y will be cancelled out by 25 cm ³ (of the total 75cm ³) of X
1/	7	oldAH=63	∴ remaining 50cm³ of Y in a total volume of 100cm³ gives rotation of -79°
10		0 F	⊠A Tertiary haloalkanes have only one halogen atom not three ☑B Tertiary Haloalkane: 3 carbons directly attached to the C-Br aroun
18	В	95	Sc Secondary Haloalkane: 2 carbons directly attached to the C-Br group
			Image: Description of the second s
10	C	03	B hydrolysis: splitting molecule into two adding a small molecule over the break
19	5	93	C ethanolic potassium hydroxide is a chemical agent in elimination reactions
			Image: Second structure
	~	70	ethers can be made by nucleophilic substitution of haloalkanes with alkoxide ions.
20	В		(no H bonds between molecules of pure ether)
		01044-71	 C alcohol and ethers can both be used as solvents b both alcohols and ethers are flammable
			HHH HHH
01	~	71	
21	C		$ \qquad H-C-C-C-I \qquad \longrightarrow H-C-C-C-C-H \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $
		010711-04	Н́Н́Н́∽ОСН₂СН₃ Н́Н́Н́ Н́Н́
			■ A -OH group heterolytically splits to produce H ⁺ ion when attached to C=O group
22	D	55	■B -OH group heterolytically splits to produce H ⁺ ion when attached to C=O group
		oldAH=54	☑D electrons delocalise in COO ⁻ group as both groups behave differently attached
	~	62	■A one -NH2 in structure which reacts with acid ■B both -NH2 arouns in structure will react with acid
23	В	03	\square D born $-NH_2$ groups in structure which reacts with acid
		0104H=02	☑D one -NH₂ in structure which reacts with acid ☑ 4 Tantiany aming 2 comband directly attached to the N stem
21	٨	\sim	B Secondary amine: 2 carbons directly attached to the N atom
24	A	90	EC Primary amine: 1 carbon directly attached to the N atom
			IMD Iriamine: molecule with three separate amine -NH₂ groups ■A addition/hydration: water added across C=C double bond
25	۸	80	B hydrolysis: water added as C=N bond splits
20	A	07	C hydrolysis: water added back in as ester splits into alcohol and carboxylic acid
			nyaroiysis, water added dack in as ester splits into alconol and cardoxylic acid

			Peak with highest m/z ratio represents mass of original structure = 58
			⊠A Propane C3H8 = (3x12)+(8x1) = 36+8 = 44
26	D	79	B Propan-1-ol CH3CH2CH2OH = (3x12)+(8x1)+(1x16) = 36+8+16 = 60
	U		▼C Propan-2-ol CH3CHOHCH3 = (3×12)+(8×1)+(1×16) = 36+8+16 = 60
			☑D Propanone CH ₃ COCH ₃ = (3×12)+(6×1)+(1×16) = 36+6+16 = 58
			🗷 A Proton NMR: flipping of spins of hydrogen nuclei in a strong magnetic field
27	$\boldsymbol{\mathcal{C}}$	00	🗷 B Emission Spectroscopy: Measuring wavelengths produced when excited electrons drop down energy levels
21	C	00	$oxtimes \mathcal{C}$ IR-spectroscopy: absorbed IR radiation of particular wavenumber vibrates particular bonds
			🗷 D Mass Spectroscopy: Mass measured by the bending of charged particles in electric field
		49	🗷 A Ion fragments have a positive charge
20			⊠B [CH2Br]⁺ has mass (1×12)+(2×1)+(1×79.9) = 12+2+80 = 94
20	D		oxtimes C Ion fragments have a positive charge
			☑D [C6H4NH2] ⁺ has mass (6x12)+(6x1)+(1x14) = 72+6+14 = 92
			From data booklet: 3300cm ⁻¹ - 3500cm ⁻¹ IR absorption = amine (not hydrogen bonded)
	•		abla A (CH ₃) ₃ N is a tertiary amine and has no hydrogen bonding as it lacks N-H bond
29	A	90	B CH3NHCH3 is a secondary amine - contains hydrogen bonding on its N-H bond
	•••	~ ~	EC -NH2 group leads to hydrogen bonding through its N-H bond
			D -NH2 group leads to hydrogen bonding through its N-H bond
			${oxtimestreenergy}$ A Active structure as it has NH2 group on left and NH group attached to S
30	Δ	02	\blacksquare B H ₃ C- group at far left makes structure inactive
50	Z	02	EC Cl attached to S would make structure inactive as N-H must be attached to S
			ED CH ₃ - attached to N on far left would rotate and make structure inactive

2014 Revised Adv H Chemistry Marking Schem							
Long Qu	Answer	Reasoning					
1 a(i)	Answer to include:	1 st Mark: An electron is excited/promoted to higher energy level 2 nd Mark: When electron falls to lower/around state energy/red light is emitte					
1a (ii)	169.6	$E = \frac{L \times h \times c}{\lambda} = \frac{6.02 \times 10^{23} \text{ mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^8 \text{ m s}^{-1}}{706 \times 10^{-9} \text{m}}$ = 169600 J mol ⁻¹ = 169.6 kJ mol ⁻¹					
1b	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
1c(i)	Answer showing:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
1c(ii)	3p orbitals are filled singly	Hund's Rule of Maximum Multiplicity: Orbitals fill up is such a way to maximise the number of parallel spins					
1c(iii)	$\begin{array}{c cccc} n & l & m & s \\ \hline 4 & 0 & 0 & \frac{+\frac{1}{2}}{& & & \\ & -\frac{1}{2} \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
1d	Many different electron transitions possible	Lines on an emission spectrum are caused by excited electrons dropping back to lower electron level and the energy released is released as electromagnetic radiation. For the release of visible light, the electrons must drop down to n=2					
1e	3.64x10 ⁻¹³	73ppm = 73mg per kg = 7.3×10 ⁻² g per 1000g Sample size = 1.0×10 ⁻⁶ g \therefore 7.3×10 ⁻¹¹ g per 1×10 ⁻⁶ g 1mol Hg = 200.6g n o. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{7.3\times10^{-11} \text{ g}}{200.6 \text{ g mol}^{-1}}$ = 3.64×10 ⁻¹³ mol					
2a	0 с-с ⁰ но он	Carboxyl groups are -COOH ∴ oxalic acid has 2 carboxyl groups back to back.					
2b	x=2	$1 \mod CaSO_4 = (1\times40.0)+(1\times32.1)+(4\times16) = 40+32.1+64 = 136.1g$ $no. of mol = \frac{mass}{gfm} = \frac{3.89g}{136.1g mol^{-1}} = 0.0286 mol$ $mass of H_2O = mass of hydrated CaSO_4 - mass of dehydrated CaSO_4$ $= 4.94 - 3.89$ $1 \mod H_2O = (2\times1)+(1\times16) = 2+16 = 18g$ $no. of mol = \frac{mass}{gfm} = \frac{1.05g}{18g mol^{-1}} = 0.0583 mol$ $0.0583 mol is approximately twice 0.0286 mol :: CaSO_4 \cdot 2H_2O$					
2c	0.0932 mol l ⁻¹	Average titre = $\frac{16.6+16.5}{2}$ = 16.55cm ³ n o of mol = volume x concentration = 0.01655 x 0.0563 = 9.32x10 ⁻⁴ mol H ₂ C ₂ O ₄ + 2NaOH \longrightarrow Na ₂ C ₂ O ₄ + 2H ₂ O 1mol 2mol 9.32x10 ⁻⁴ mol 1.86x10 ⁻³ mol concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{1.86x10^{-3} \text{ mol}}{0.02 \text{ litres}}$ = 0.0932 mol l ⁻¹					

21		Not available in high p	ourity Not stab	le in solid or solution	So	olid is deliguescent			
Zd	One answer from:	Hygroscopic	Absorbs wate	er Absorbs CC) ₂ Low gfm				
		∆H° =	$\Sigma \Delta H_{f}^{o}$ (produ	cts) –	ΣΔŀ	f ^o (reactants)			
		=	(1x-239)) –	((1x-	-75)+(½x0))			
3a(i)	-164 J K ⁻¹ mol ⁻¹	=	-239	-	(-	-75+0)			
		=	-239	-		(-75)			
		=	-164 kJ m	ol ⁻¹					
		∆S° =	$\Sigma {\sf S}^{\sf o}$ (products	3) -	Σ	S ^o (reactants)			
_		=	(1×127)	- (((1×18	87)+(<u>‡</u> x205))			
3a(ii)	-162.5 J K ⁻¹ mol ⁻¹	=	127	-	(187	7 + 102.5)			
		=	127	-		289.5			
		= The reaction becomes t	-102.5 J K - 1	nol - , faacibla when AC° - (<u>า</u>				
36	1000 21	The reaction becomes t	nermodynamican	$\Lambda H^{\circ} = 164$	J 4 x 100	00 J mol ⁻¹			
30	1009.2K	$\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ = 0$	∴ T∆Sº = ∆Hº	$\therefore T = \frac{\Delta S^{\circ}}{\Delta S^{\circ}} = \frac{-16}{-16}$	62.5 J	$\frac{1009.2 \text{ K}}{\text{K}^{-1} \text{ mol}^{-1}} = 1009.2 \text{ K}$			
		3 mark answe	m 2	mank answan	-	1 mark answar			
		Demonstrates a good	Demonstr	rates a <u>reasonable</u>	Demor	nstrates a <u>limited</u>			
	Open Question	understanding of the chem	istry understa	nding of the chemistry	under	standing of the chemistry			
4	Anguan to Includo:	the chemistry has provided	in a statemen	t(s) which are relevant to	some	statement(s) which are			
	Answer to Include.	logically correct, including statement of the principles	a the situa s problem i	tion, showing that the s understood.	releva that a	ant to the situation, showing at least a little of the			
		involved and the application	n of		chemi	stry within the problem is			
					unders	51000.			
		7,7	۲, F	ſ					
50	Diaaram showina;	H-c-C-	\C\	or -	\frown	\searrow			
54			<u>`</u> 0'	C-H		0			
		нн		н н					
		A separating funnel i	s used as it can	be used to shake th	ne two	o layers and transfer			
E1		the organic acid from the water layer into the ethoxyethane layer in a ratio							
50	separating funnel	decided by the value of K. Once the appropriate quantity of organic acid has							
		the separating funnel.							
		n o. of mol in ethoxye	 thane = volume	x concentration = 0	.0227	x 1.10 = 0.02497mol			
		concentr	no. of m	ol _ 0.02497mol _	- 0 090	99 mal l ⁻¹			
	30.3	volume 0.025litres							
50		n o. of mol in water = v olume × c oncentration = 0.00825× 0.10 = 0.000825mol							
50		concentration = $\frac{\text{no. of mol}}{\text{unlymb}}$ = $\frac{0.000825\text{mol}}{0.025\text{tr}}$ = 0.033 mol l ⁻¹							
		$K = \frac{\text{Lorganic acid Jethoxyethane}}{\text{Lorganic acid Jethoxyethane}} = \frac{0.033}{0.033} = 30.3$							
		(H2C) heterolytica	lly enlite into	CH ₂ ⁺ and Cl ⁻ with		catalyst			
6a	Chloromethane		CH ₃	CH3		CH ₃			
				ŤΤΗ		\frown			
					▶ (
	Aluminium Chloride		\sim	<u>,</u> ‡↓	$\overline{\ }$				
6b	on AlCla			$> \bigcirc$		\checkmark			
		benzene			met	thylbenzene			
	Electrophilic	The reaction is substitu	ution as a group is	removed and a group	joins o	on to replace it.			
6C	Substitution	The substitution must be of electrophilic type as the chemical joining must be attracted to							
	Cubonnunion	Aconiete fit +h	e binding site a	nd cause a biological	Ireen	onse inside the cell			
70	Antagonist	fit th	e bindina site a	f the recentor but a	does n	not cause the			
, u		Antagonists biolog	ical response a	nd prevents any othe	er che	emical doing so.			

7b(i)	OH OH OH	2-hydroxybenzoic acid
	ОН	-OH group on C2 benzene ring carboxyl group on C1
7b(ii)	5.72g	$\begin{array}{llllllllllllllllllllllllllllllllllll$
8a(i)	addition	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
8a (ii)	One from:	Thin layer chromatography (TLC)Infrared SpectroscopyProton NMRMelting point/mixed melting pointMake a derivative & measure melting point
8b(i)	Diagram of: 2-chloropropanal or 3-chloropropanal	H-CI $H-CI$ $H-C-C-C$ $H-C-C-C$ $H-C-C-C$ H
8b(ii)	Diagram showing the product shown:	$H - C = C - C \qquad H - S - O^{-} Na^{+}$ $H H H H O$ $H O O$ $H - C = C - C - S - O^{-} Na^{+}$ $H H H O$
8b(iii)	Lithium Aluminium Hydride	Aldehyde → Primary Alcohol is a reduction reaction. Possible Reducing Agents: Lithium aluminium hydride Sodium borohydride Sodium tetrahydroborate

9a	Diagram showing:	$H - C - CH_2 - CH_3 O + C + C + C + C + C + C + C + C + C +$								
			ĊH₃ └							
9b(i)	Compound A due to presence of peak at 1690cm ⁻¹	Pe (cr 16 16 17 33	Peak (cm ⁻¹)Group Identified1600Benzene ring1690C=O stretch in aromatic/alkyl ketones1720Aromatic carboxylic acid3300Alcohol/phenol (hydrogen bonded)			Pr Ibuprofen ✓ ✓ ✓		Present in ∧ √	B ✓	
9b(ii)	One answer from:		Equilibrium Reversible reaction Side reactions Incomplete Losses during purification Crystallisation Mechanical losses Mass transfer losses Impure reactan			e reactions stallisation ire reactants				
9b(iii)	Answer to include:	<u>1st M</u> 2 nd N	<u>ark</u> : Br ato (by nu <u>Nark</u> : (Acio	om in molecule cleophilic subs) Hydrolysis of	B is replo titution w f the nitr	iced with 1 vith HCN) ile -CN gr	nitrile oup w	e -CN ill pro	group oduce a car	boxyl group
10	Open Question Answer to Include:	3 mark answer2 mark answer1 mark ansDemonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.Demonstrates a limited understanding of the che involved, making some statement(s) which are to the situation, the problem is understood.				SWET nemistry has made thare relevant g that at mistry within pod.				
11a(i)	1	E	Experiment 1+3	Change [CH3CHIC2	₂ H₅] x3	Effect on X3	Rate	ہ ا	Order of rea CH3CHIC	<u>ctant</u> 2H5] ¹
11a(ii)	0	1+2		CH3CHIC2H and [OH	CH₃CHIC₂H₅] x2 and [OH]x 2		x2 I		If [CH3CHIC2H5] ¹ then [OH] ⁰	
11b(i)	Rate = k[CH ₃ CHIC ₂ H ₅]	Rat	e = k x [CH3CHIC2H	₅] ¹ × [C)H] ⁰ ∴ F	Rate	= k	[CH₃CHI	 C₂H₅]
11b(ii)	1.4×10 ⁻³ s ⁻¹	rate = $k \times [CH_3CHIC_2H_5]$ $\therefore k = \frac{rate}{[CH_3CHIC_2H_5]}$ $= \frac{1.4 \times 10^{-4} \text{ mol } l^{-1} \text{ s}^{-1}}{0.10 \text{ mol } l^{-1}}$ $= 1.4 \times 10^{-3} \text{ s}^{-1}$								
11c	Mechanism showing: OH ⁻ attacks from	$\begin{array}{c} \begin{array}{c} H \\ CH_{3}-C-I \\ C_{2}H_{5} \\ 2\text{-iodobutane} \end{array} \begin{array}{c} CH_{3}-C+ \\ H \\ CH_{3}-C+ \\ C_{2}H_{5} \end{array} \begin{array}{c} C_{2}H_{5} \\ C_{2}H_{5} \\ C_{2}H_{5} \end{array} \begin{array}{c} H \\ CH_{3}-C+ \\ C_{2}H_{5} \end{array} \begin{array}{c} C_{2}H_{5} \\ C_{2}H_{5} \\ C_{2}H_{5} \end{array} \begin{array}{c} H \\ CH_{3}-C- \\ C_{2}H_{5} \end{array} \begin{array}{c} CH_{3}-C-OH \\ C_{2}H_{5} \\ C_{2}H_{5} \end{array} \begin{array}{c} C_{2}H_{5} \\ C_{2}H_{5} \\ C_{2}H_{5} \end{array} \begin{array}{c} C_{2}H_{5} \\ C_{2}H_{5} \\ C_{2}H_{5} \end{array} \end{array}$					-1 etermining Step ntities of			
11d	either side	both optical isomers to give a racemic mixture with no optical activity.								

		1mol AgCl = (1x107.9)+(1x35.5) = 107.9+35.5 = 143.4g					
		mass of silver in 100cm ³ = <u>gfm Ag</u> /gfm AgCl × 0.620g = <u>107.9</u> /143.4 × 0.620g = 0.467g					
12a(i)	46.5	mass of silver in 1000cm³ = 4.67g					
		% As in same Mass of Ag 100 - 4.67g 100 - 46 5%					
		$\frac{10.04g}{10.04g} \times 100 = \frac{10.04g}{10.04g} \times 100 = \frac{10.04g}{10.04g$					
	Add more HCl and no	The chloride Cl^2 ions in HCl precipitate with the Ag ⁺ ions in coin solution but not					
12a(ii)	more precipitate	Cu^{2+} or Ni ²⁺ ions. When all the Ag^+ ions have precipitated then adding more HCl					
	should form	will not cause any more precipitation and this would mean that the solution would					
	Should for M.	not go cloudy anymore (cloudy is the signal that precipitation is taking place).					
		1mo1 CuCNS = (1x63.5) + (1x12) + (1x14) + (1x32.1) = 121.6g					
		n o. of mol = $\frac{\text{mass}}{\text{n}^{\text{fm}}} = \frac{0.320g}{1216 \text{ small}^{-1}} = 0.00263 \text{mol}$					
121	16.6	grm = 121.0y r(10)					
120		mass cu in 1000cm ³ = $1.67c$					
		mass cum 1000cm = 1.07g					
		% Cu in coin = $\frac{\text{mass of Cu}}{\text{mass of coin}}$ x100 = $\frac{1.67g}{10.04g}$ x100 = 16.6%					
		n o of mol K ⁺ = v olume x c oncentration = 0.02 litres x 1 mol l ⁻¹ = 0.02mol					
13a(i)	0.333 mol l ⁻¹	concentration = <u>no. of moles</u> = <u>0.02 mol</u> = 0.333 mol l ⁻¹					
	3.47×10 ⁻⁵ mol l ⁻¹	n o. of moles H^* = v olume x concentration = 0.04 litres x 1 mol l^{-1} = 0.04mol					
		concentration = <u>no. of moles</u> = <u>0.04 mol</u> = 0.667 mol l ⁻¹ volume = <u>0.06 litres</u>					
13a(ii)		pH = pK _a - log [acid] [salt] = 4.76 - log 0.667 mol l ⁻¹ = 4.76 - log(2.00)					
		= 4.76 - 0.301					
		= 4.46					
		$pH = -\log_{10}[H^*] = 4.46 \therefore \log_{10}[H^*] = -4.46 \therefore [H^*] = 10^{-4.46} = 3.47 \times 10^{-5} \text{ mol } l^{-1}$					
		<u>1st Mark</u> : OH ⁻ ions would neutralise H ⁺ ions					
13b	Answer to include:	2 nd Mark: H ⁺ ions would be replaced as ethanoic acid would dissociate into					
		ethanoate ions					